Self-Healing Cyber Resilient Framework for Software Defined Networking-enabled Energy Delivery System
Hasan, K., Shetty, S., Hassanzadeh, A., Salem, M.B. and Chen, J.
Abstract
Software defined networking (SDN) is a networking paradigm to provide automated network management at run time through network orchestration and virtualization. SDN can also enhance system resilience through recovery from failures and maintaining critical operations during cyber attacks. SDN’s selfhealing mechanisms can be leveraged to realized autonomous attack containment, which dynamically modifies access control rules based on configurable trust levels. In this paper, we present an approach to aid in selection of security countermeasures dynamically in an SDN enabled Energy Delivery System (EDS) and achieving tradeoff between providing security and QoS. We present the modeling of security cost based on end-to-end packet delay and throughput. We propose a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(MN2), where M is the number of objective functions and N is the number of population for each generation respectively. We present simulation results which illustrate how data availability and data integrity can be achieved while maintaining QoS constraints.
Copyright Notice
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
- The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."
- The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."
- The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."