Dynamic decentralized voltage control for power distribution networks
Liu, H., Shi, W., Zhu, H.
Abstract
Voltage regulation in power distribution networks has been increasingly challenged by the integration of volatile and intermittent distributed energy resources (DERs). These resources can also provide limited reactive power support that can be used to optimize the network-wide voltage. A decentralized voltage control scheme based on the gradient-projection (GP) method is adopted to minimize a voltage mismatch error objective under limited reactive power. Coupled with the power network flow, the local voltage directly provides the instantaneous gradient information. This paper aims to quantify the performance of this decentralized GP-based voltage control under dynamic system operating conditions modeled by an autoregressive process. Our analysis offers the tracking error bound on the instantaneous solution to the transient optimizer. Under stochastic processes that have bounded iterative changes, the results can be extended to general constrained dynamic optimization problems with smooth strongly convex objective functions. Numerical tests using a 21-bus network have been performed to validate our analytical results.
Copyright Notice
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
- The following copyright notice applies to all of the above items that appear in IEEE publications: "Personal use of this material is permitted. However, permission to reprint/publish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE."
- The following copyright notice applies to all of the above items that appear in ACM publications: "© ACM, effective the year of publication shown in the bibliographic information. This file is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the journal or proceedings indicated in the bibliographic data for each item."
- The following copyright notice applies to all of the above items that appear in IFAC publications: "Document is being reproduced under permission of the Copyright Holder. Use or reproduction of the Document is for informational or personal use only."