Introduction

- Many applications take advantage of peer-to-peer architectures (e.g., storage, content distribution, live streaming)
- Peer-to-peer design eliminates the need for centralized infrastructures that require expensive servers
- Peer-to-peer organization also introduces the security vulnerability that aggressive resource consumption by a single peer or small group of peers can significantly degrade the performance and availability of the system without being easily detected

Goals

- Limit opportunities for selfish peers to cheat the system by consuming resources without making a proportional contribution in return (i.e., free-riding problem)
- Limit opportunities for malicious peers to disrupt the system by purposely exhausting resources that would otherwise be available to legitimate peers (i.e., DoS attack)
- Accomplish these limitations on selfish and malicious behavior with a scalable, decentralized solution that does not require the use of centralized servers

Framework

- Organize a subset of trusted nodes into another p2p overlay on top of the existing p2p overlay network
- Use these trusted nodes and their corresponding overlay network to collectively detect misbehavior and disseminate information throughout the system regarding attackers
- Once identified, isolate attackers from the system

Protocol

- Each untrusted peer is assigned to be managed by a trusted peer that tracks its upload and download information in a local database
- Prior to granting a request, a peer P will collect a digitally signed ticket $T(R,P,X,A)$ from the requester R indicating that P has provided amount A of some resource or service X to R
- P will submit T to its assigned trusted peer TP
- TP will update P's record to reflect its contribution
- If TP does not also manage R, then it will forward T to trusted peer TP' that manages R
- Trusted peer TP' responsible for R will update R's record to reflect its additional resource or service usage
- If R’s database record indicates a violation of policy, TP' will alert other nodes

Results

- Simulated 1024-node p2p network with 50 well-behaved nodes making requests and various numbers of attackers also making requests
- Figures show the effectiveness of our protocol at limiting disruptions caused by selfish or malicious peers
- In each figure, BG indicates the percentage of requests granted to well-behaved nodes as we increase the number of attackers while MG indicates the percentage of requests granted to attackers as we increase the number of attackers.

This work was supported by the AT&T Labs Fellowship Program