I. Introduction
• A supervised, game theoretic, software agent based decision and control approach to distributed trustworthy networked systems
• Game theory provides a decision and control framework for intrusion detection systems (IDS) to address issues like attack modeling, analysis of possible threats, and decision on response actions.
• Supervision ensures accurate adaptation of the IDS’s in stochastic networks.
• Objectives of this study:
 - Network modeling and problem definition
 - Recognition of players in the system and identification of interactions among them
 - Introduction of the “Oracle” and its supervision
• Study of performance of given interaction and supervision models on typical networks

II. Layered System Model
• Bottom Layer: distributed networked system
 - Attacks occur in this layer
 - Intermediate Layer: software agents & IDS
 - Agents detect anomaly and make decision
 - Top Layer: supervisor (or several supervisors)
 - The supervisor trains the agents with feedback

III. Process and Parameters
• While an attack occurs in a local area:
 - Agents negotiate to decide on the security level, and take appropriate actions.
 - If a supervisor is monitoring this area, with perfect attack information, it sends feedback to the agents.
• Two parameters: trust and weight
• Trust: the trustworthiness of the observations made by the given agent from the point of view of the rest of the agents
• Computed during “negotiation”
• Weight: the trustworthiness of the decision made by the given agent from the point of view of the supervisor
• Computed during “supervision”

IV. Supervision
• Supervisor input:
 - Actual attack information
 - Agents detection
 - Previous weight allocation
• Supervisor action:
 - Computes optimal weight allocation given these factors
• Supervisor feedback:
 - Current optimal weight allocation (in the absence of supervision, the local group members use the most recent weight allocation for the same type of attack)

V. Game Theory
• Used to model negotiation process: static, non-cooperative, nonzero-sum, repeated game
• Games are played within each local group (for simplicity, assume only one local group)
• Agents as players \(N = \{P_1, P_2, ..., P_N\} \)
• Agents detection matrix \(D = [D_1, D_2, ..., D_N] \)
• Decision vector of \(P_i \) is \(D_i \), where \(D_i \) is the detector vector of \(P_i \)
• \(D_i \) quantifies \(P_i \)'s detection in each possible attack target category.
• \(K \) categories \(\rightarrow \) \(D_i \) is \(K \)-dimensional
• Action set of \(P_i \), denoted as \(M_i \)
• \(U_i \) is called an action of \(P_i \)
• Weight vector \(W = [w_1, w_2, ..., w_N] \), assumed as a constant of the objective function during “negotiation”

VI. Game Model
• Objective function of \(P_i \): \(J_i(U_i, U_{-i}) \)
 - \(U_{-i} = \{U_1, U_2, ..., U_i, U_{i+1}, ..., U_N\} \)
• The trust vector: Pure Strategy Nash Equilibrium (PSNE) of the “negotiation” game
 - \(M_i \) is chosen as the set of all possible trust allocation vectors
 - \(M_i \) is a simplex
 - A PSNE may not always exist
 - A Mixed Strategy Nash Equilibrium (MSNE) is always guaranteed to exist, however it requires extensive computation.
• In examples:
 - Choose objective function carefully to ensure existence of PSNE
 - Choose objective function carefully to relieve computational load
 - Introduce an iterative update algorithm and check convergence
 - This algorithm uses the reaction functions of the players

VII. Simulation
• \(J_i(U_i, U_{-i}) = \sum_{j=1}^{N} w_j J_i(U_i, U_{-i}) - d_i \)
• \(D \) is KxN matrix, \(N=6, K=1 \)
• \(d \) denotes actual severity: \(d_i \in N(0, 1) \)
• \(X_i = U_i : \) the security level set by \(P_i \)
• Find \(X_i \); check existence of \(U_i \)
 - \(d = 1 \)
 - Weight = \{0.0051, 0.2470, 0.1472, 0.3082, 0.1541, 0.1385\}
 - \(U_1 = \{0.3052, 0.2125, 0.0997, 0.1365, 0.1009, 0.1452\} \)
 - \(U_2 = \{0.1982, 0.3379, 0.1293, 0.0988, 0.1307, 0.1051\} \)
 - \(U_3 = \{0.2190, 0.3136, 0.1235, 0.1061, 0.1250, 0.1129\} \)
 - \(U_4 = \{0.2659, 0.2586, 0.1106, 0.1226, 0.1119, 0.1504\} \)
 - \(U_5 = \{0.2199, 0.3124, 0.1233, 0.1064, 0.1247, 0.1132\} \)
 - \(U_6 = \{0.2618, 0.2634, 0.1117, 0.1212, 0.1130, 0.1289\} \)
 - \(X_{star} = \{0.7487, 0.7375, 0.7123, 0.7370, 0.7145\} \)
• Convergence in iterative process
 - \(X_i^{(n+1)} = \frac{w_i d_i^{(n)} + \sum_{j=1}^{N} w_j X_j^{(n)}}{1 + \sum_{j=1}^{N} w_j} \)

VIII. Next Step
• Simulation of “Supervision”
• Implementation on more realistic networked system platform, e.g. Jade
• New game model
 - Trust vector as MSNE
 - Fictitious Play Model
 - Dynamic game
• Nature and Attacker as players