Routing with Confidence:
Supporting User Discretion in Policy Based Networks
Apu Kapadia, Prasad Naldurg, Roy H. Campbell

Problem
- Policy Based Networks (PBN) enforce coarse-grained mandatory policies for routing
- Users may desire additional discretionary control on their routes based on Quality of Protection (QoP) metrics
- Need a mechanism to compute desirable routes of “high confidence” based on dynamic trust attributes

Solution
- Attribute based route selection
- Assign confidence values to routers/attributes based on current threat model
- Order routes according to highest confidence

Approach
- Model the network as a Kripke structure
 » Nodes are labeled with the router’s trust attributes
 » Attributes can be physical security, administrative domain, processor speed, etc.
- Specify Regular Expression Path Formulas
 » Global properties: these properties must be true at all nodes
 » Precedence properties: properties must appear in a particular order (e.g., non-decreasing security levels)
- Assign confidence values based on threat
- Compute \(k \) highest confidence paths
 » use an appropriate combiner to calculate path confidence
 » e.g., multiplicative combinators, min, etc.

Applications
- High performance and military environments
- Ubiquitous computing
- Peer to Peer overlay networks

Issues
- Need user friendly policy definition languages
- How to adapt established routes to changing trust attributes
- How to assign and combine confidence values

Scenario: intruder on premises
- User u1 excludes physically insecure routers (shaded) from route selection
- User degrades confidence in routers with outdated OS (square nodes)
- User suspects intruder in domain D1 and degrades confidence for those routers
- User experiences large delays in D2 and degrades confidence for those routers
- Three highest confidence routes are computed as shown