Objective: Improving BGP plane resilience by protocol configuration and extension.

BGP and Rationales
- **Border Gateway Protocol (BGP)**
 - De facto standard of inter-domain routing
 - Controlling the distribution of global routes
 - The largest man-made distributed system
 - 10,000 Autonomous Systems and 100,000 BGP routers
- **BGP infrastructure** has to be improved in **evolutionary, scalable** and **deployable** ways.

BGP Session Reliability
- **Two failure causes**
 1. Service-stop
 - BGP router nonresponse
 - IGP routing disruption
 2. Severe network congestion
 - Traffic engineering failures (TCP saturation)
 - Warm attacks (UDP saturation)

Service-stop
- Impact of the time interval of the service stop on BGP session failure probability

Severe network congestion
- Impact of the packet drop probability on BGP session lifetime

IBGP Network Resilience

Resilience analysis
- Cause-based reliability analysis
 - Based on IBGP overlay network model.
 - Consider typical failure scenarios in IP networks
- Two metrics for IBGP resilience:
 - IBGP failure probability
 - Probability of IBGP session failures.
- Expected connectivity loss
 - Average number of IBGP router pairs which have no valid IBGP signaling path.

IBGP RR Network Configuration
- IBGP route reflection network configuration
 - How to cluster IBGP routers?
 - How many redundant reflectors needed?
 - How to place reflectors?
- Using redundant elements does not necessarily increase IBGP resilience.

Optimizing IBGP RR Networks
- Appropriate route reflection design makes IBGP more robust.
 - Minimizing expected connectivity loss
 - Minimizing IBGP failure probability
- In general, the optimization problem is NP hard. In some special settings, there are efficient solutions.

Conclusion: BGP resilience can be improved in a deployable way by configuring Internal BGP networks and TCP appropriately.